

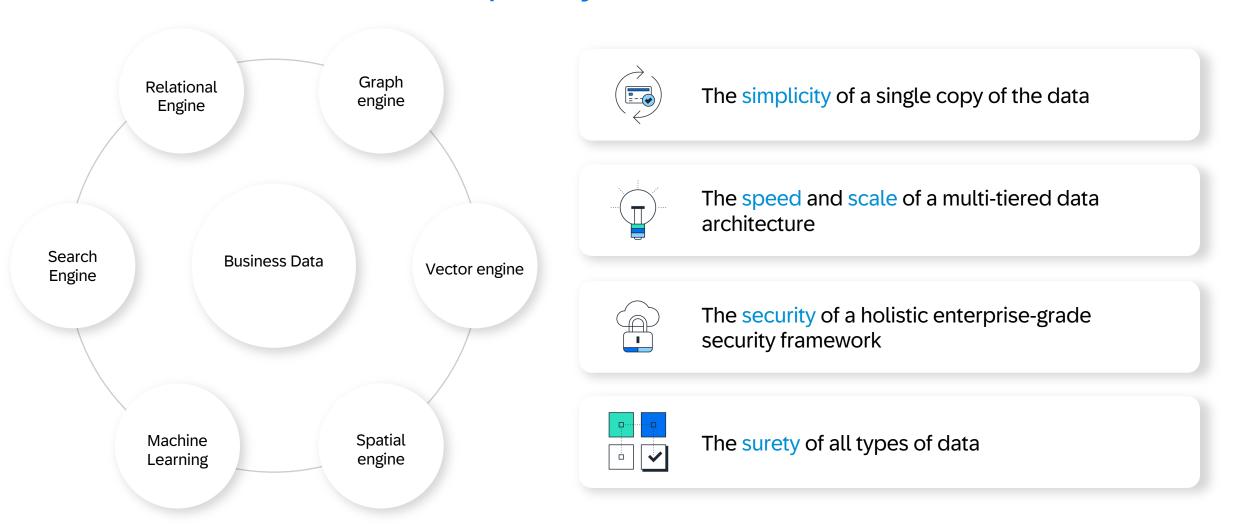
SAP HANA Cloud Multi-model and Machine Learning

The Modern Data Challenge

Innovate despite data silos

It's complex to manage and leverage many specialized databases.

It's frustrating to make untimely decisions.


It's risky to secure data across many separate systems.

It's discrediting to deliver information with consistency issues.

The Modern Data Solution

Consolidate to reduce complexity and enable innovation

SAP HANA Cloud

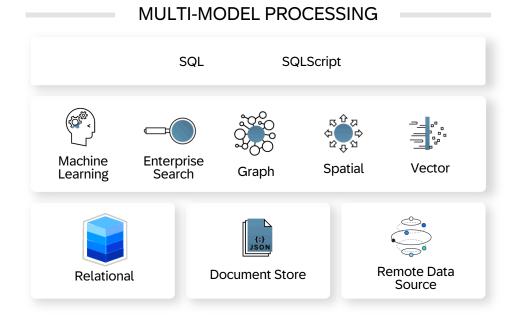
Power the next generation of Intelligent Data Applications

Virtually blend data from remote sources with locally tiered data

Process all types of business data regardless of data model, type, or volume

Interact in real-time using an industry standard language

Spatial


Location-based intelligence

Graph

Storage and traversal of highly connected data and associated properties

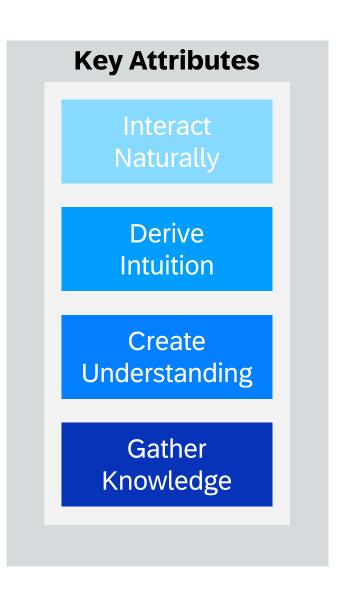
Document Store

ACID-compliant, flexible management of JSON documents

Enterprise Search

Find business entities within the database

Machine Learning


Expert library designed and optimized for fastest in-memory processing

Vector

Embedding storage and similarity search functions

SAP HANA Cloud

An intelligent data application is an independent component within a business process that operates with autonomy and/or provides the user with the tools to perform with expertise.

5

prevented a holistic view of asset information

enabled data from Esri and SAP to integrate in a single database Field workers
receive reliable
guidance in
locating pipelines
and identifying
repair needs

Stakeholders
have immediate
transparency
into pipeline
operations

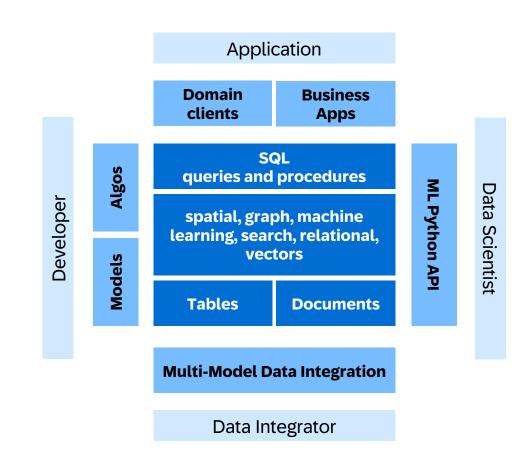
SAP HANA Cloud Data Processing Engines

Overview

SAP HANA Cloud Spatial

- Spatial data types and reference systems
- Spatial functions, predicates, and algorithms
- Esri and open source GIS integration

SAP HANA Cloud Graph


- Relational data as graph/network
- Pattern matching queries
- Built-in graph algorithms and custom network processing

SAP HANA Cloud JSON Document Store

- Native store for JSON documents
- JSON operations via SQL

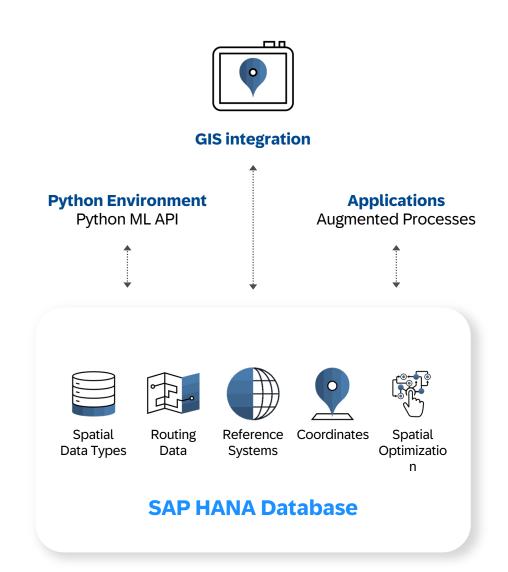
SAP HANA Cloud Vector Engine (QRC1 2024)

- Vector data type
- Vector distance functions

8

Spatial

Spatial data types


- Native storage for vector data types such as points, lines, polygons...
- 2D and 3D objects supported
- Choice to use a specific spatial reference system

Spatial function and predicates

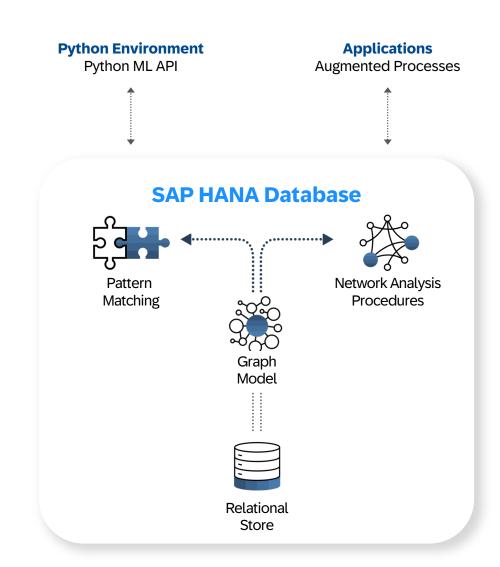
- Boolean operations, e.g. union, intersect
- Relationship determination, e.g. contains, touches
- Property computation, e.g. length, area
- Transformation and inspection, e.g. SRS, lin. referencing

Consumption and ecosystem

- SQL, ABAP
- Esri ArcGIS, Esri geodatabase, GeoTools/GeoServer, QGIS
- Python client for machine learning (hana-ml)

Graph

Graph model

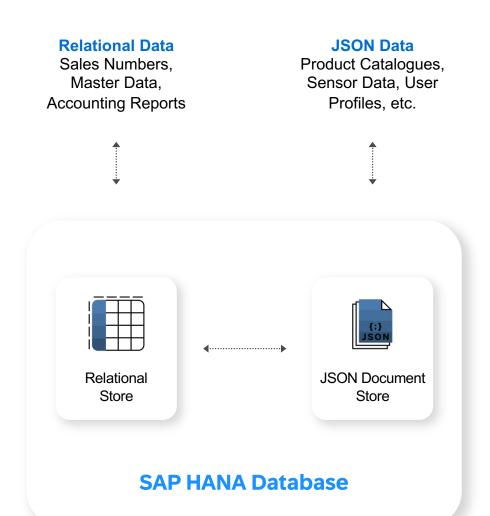

Labeled property graph embedded into SQL/relational

Graph queries and algorithms

- Cypher for pattern matching
- Built-in algorithms, e.g. shortest path, page rank, link prediction
- In-database Graph procedures ("GraphScript")

Consumption

- SQL, ABAP (via AMDP)
- Python client for machine learning (hana-ml)
- HANA Database Explorer, Cytoscape (preview)


JSON Document Store

Native store for JSON documents

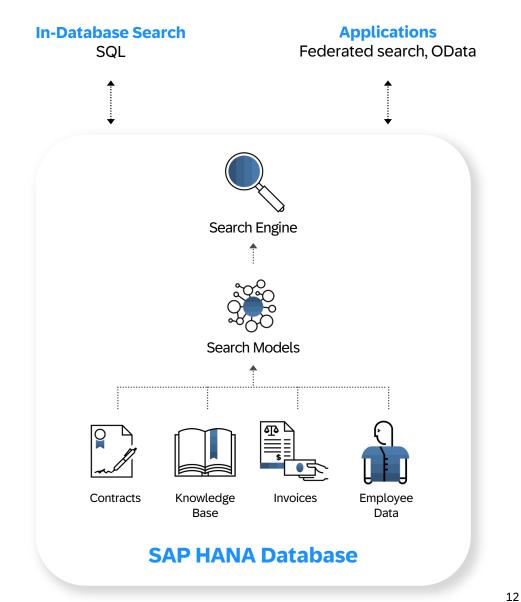
- Schema-less, hierarchical, semi-structured data
- Arrays, objects, key-value pairs
- Complementary, fully integrated store
- ACID across all stores (row, column, document)
- Indexing, SQL parameters, paging to disk, import/export
- Backup/restore, encryption, failover

Native JSON operations via SQL

- Projection, filtering, aggregation
- Unnesting arrays
- Joins with relational data

Full-text Search

In-database search


- Column store data types: string, date, numeric
- Fuzzy search index
- Speed up fuzzy searches and enable text search

Search models

- SQL views (joins, w/ parameters), table functions
- Search configuration via built-in procedure or HDI
- Entity type and property annotations
- Multi-value, sub-objects, multilingual texts

Search

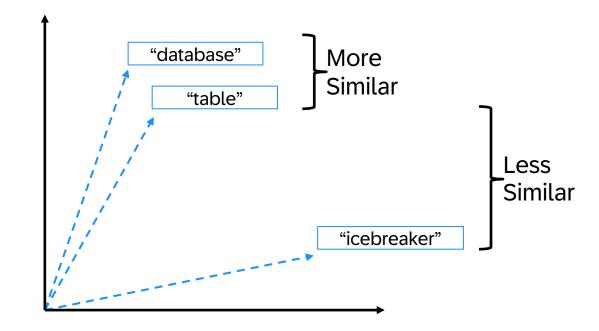
- SQL contains predicate
- Federated search using built-in procedure
- OData, Enterprise Search SDK

Vector

Vector data type

- REAL_VECTOR
- Natively store high-dimensional vectors

Vector functions


- Combine vector functions with other SQL operations
- L2DISTANCE()
- COSINE_SIMLARITY()

Consumption

- SQL
- python (hana-ml)

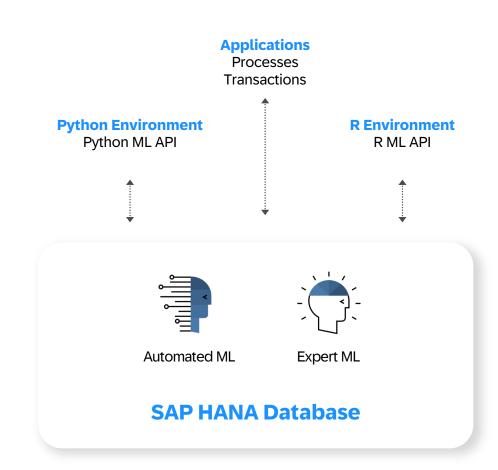
Roadmap & Vision

- LangChain plug-in, CAP support, SAP Generative AI Hub integration
- Vector indexes, approximate nearest neighbor (ANN) search
- In-database text embedding

*Planned Q1 2024

Machine Learning

Embedded Machine Learning Libraries


- Predictive Analysis Library (PAL) for experts
- Automated Predictive Library (APL)

Key Machine Learning Scenarios

- 100+ classic and trending ensemble algorithms
- Time series forecasting, classification, regression
- Machine learning functions optimized for massive parallel inmemory processing

Additional Features

- Native interfaces for data scientists in R and Python
- Improved data science in Python to development handshake for building an intelligent data application
- Simple ML scenario generation for SAP Business Application Studio
- New PAL AutoML framework supporting classification, regression, and time-series scenarios

Recent Innovation Highlights

Innovation Highlights

Spatial Functions in the Graph Engine

Spatial Intelligence Meets GraphScript

- GraphScript now supports all methods of ST_GEOMETRY which do not return ST_GEOMETRY or VARBINARY data types as outputs
- All the ST_GEOMETRY types listed in the <u>SAP HANA Cloud</u>, <u>SAP HANA Database Spatial Reference</u> are supported

Benefits

- Apply spatial facet to graph networks
- GraphScript algorithms can now evaluate the spatial characteristics of graph vertices and edges

Use Cases

- Identifying optimal routes
- Avoiding restricted areas when determining shortest paths
- Dynamic calculation of edge weights within a graph network

Spatial Pruning: Avoid no-go area

Innovation Highlights

GraphScript on JSON Document Store

Enable Graph Processing on JSON Documents

- Create a graph workspace on document store collections
- Support for the document store data model in graph engine
- Adjacency Index(Persistent Index) built on top of the JSON collection
- No need to rebuild after updates

Benefits

- Ability to analyze graph data stored in JSON document store
- Interoperability with other multi-model engines

Use Cases

- Social Network analysis with user profiles in unstructured JSON format
- E-Commerce Product Recommendation
- Fraud detection in financial transactions

```
CREATE COLLECTION MY_SCH.MY_COLLECTION;

CREATE HASH INDEX MY_HASH_INDEX ON MY_SCH.MY_COLLECTION ("id_path"."id");

-- ID, SOURCE and TARGET: 63 bit positive integer values
-- TYPE: string - either "vertex" or "edge"

CREATE ADJACENCY INDEX MY_ADJ_INDEX ON MY_SCH.MY_COLLECTION (
    ID "id_path"."id",
        SOURCE "src_path"."src",
        TARGET "tgt_path"."tgt",
        TYPE "type_path"."type");

CREATE [OR REPLACE] GRAPH WORKSPACE A_SCH.A_GRAPH ADJACENCY INDEX MY_SCH.MY_ADJ_INDEX;
```

```
1  [{
2     "id": 0,
3     "type": "vertex",
4     "name": "Nary",
5     "role": "senior manager"
6     },
7     {
8         "id": 1,
9         "type": "vertex",
10         "name": "John",
11         "role": "manager"
12     },
13     {
14          "id": 2,
15          "type": "vertex",
16          "name": "Sara",
17          "role": "architect"
18     },
19     {
20          "id": 3,
21          "type": "vertex",
22          "name": "Paul",
23          "role": "senior developer"
24     },
```


Vector Engine (Planned Q1 2024)

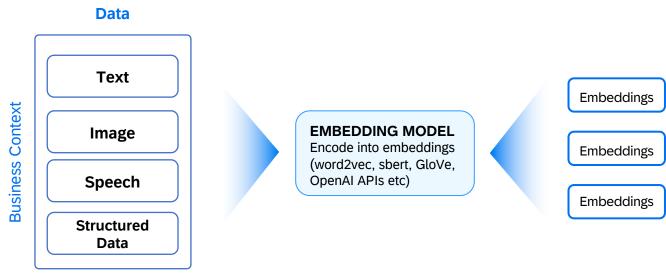
Definitions

Vector

A vector is a list of numerical float values that has magnitude and direction. In the context of Generative AI, it is used to represent 'something' (object) like a book, car, customer record, etc. that describes the object itself or its attributes or characteristics, which can further be compared

Embeddings

An embedding is one of the numbers in the vector representation that represents data in a way that captures meaningful information, semantic relationships, or contextual characteristics.


19

Definitions

Embedding Model

A type of machine learning model that is designed to transform high-dimensional categorical data into lower-dimensional, continuous vector representations. This model is particularly used for transforming high-dimensional and complex data into a more concise and meaningful representation.

Example: Word2Vec, GloVe, Sentence Bert, Open AI APIs etc.

Public

20

21

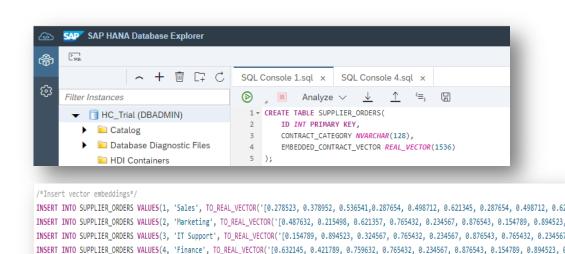
SAP HANA Cloud Vector Engine

Planned for Q1-2024 Release

Vector data type: 'REAL_VECTOR'

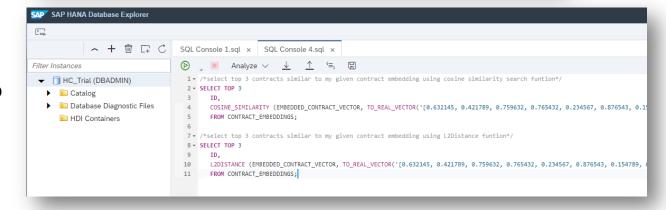
- Natively store high-dimensional vectors
- E.g. text embeddings

Vector functions: L2DISTANCE(), COSINE_SIMILARITY()


- Vector distance functions
- Combine vector functions with other SQL operations

Consumption

- SQL
- python (hana-ml)

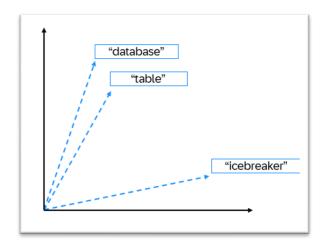

Roadmap & Vision

- LangChain plug-in, CAP support, SAP Generative AI Hub integration
- Vector indexes, approximate nearest neighbor (ANN) search
- In-database text embedding

INSERT INTO SUPPLIER_ORDERS VALUES(5, 'Human Resources', TO_REAL_VECTOR('[0.287654, 0.498712, 0.621345, 0.765432, 0.234567, 0.876543, 0.278523, 0.

INSERT INTO SUPPLIER_ORDERS VALUES(6, 'Legal', TO_REAL_VECTOR('[0.765432, 0.234567, 0.876543, 0.278523, 0.378952, 0.536541,0.287654, 0.278523, 0.3

22


SAP HANA Cloud Vector Engine

Similarity Search Example

Search Term: "Database"

Search Term (attributes stored as Vector Embeddings): [0.18, -0.55, 0.77,]

Compare against table of records stored in the database:

Most similar to ———— 'Database'	
Least similar to 'Database'	

Term	Vector Embeddings	Distance	Rank
Table	[0.18, -0.65, 0.75,]	0.24	1
Schema	[0.12, 0.75, 0.14,]	0.28	2
Token	[0.67, 0.45, -0.16,]	0.57	3
Icebreaker	[0.89, 0.77, 0.34,]	0.68	4

Considering distance calculated using L2Distance() function

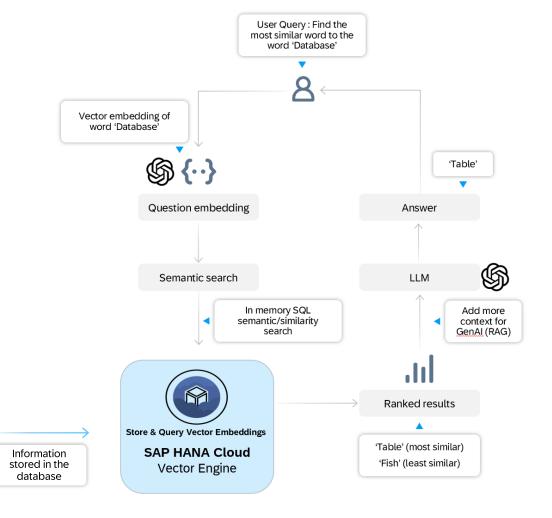
Benefits

Execute fast inmemory vector searches using SQL

Combine vector similarity search results with other business data

Ground generative Al queries for better responses

Implement "human intuition" specific use cases


*Planned Q1 2024

Execute fast in-memory vector searches using SQL

Store and retrieve vectors swiftly using SQL, optimizing data access and retrieval Leverage the speed of in-memory processing for faster query response times

Public

Term	Vector Embeddings
Table	[0.18, -0.65, 0.75,]
Schema	[0.12, 0.75, 0.14,]
Token	[0.67, 0.45, -0.16,]
Fish	[0.89, 0.77, 0.34,]

*Planned Q1 2024

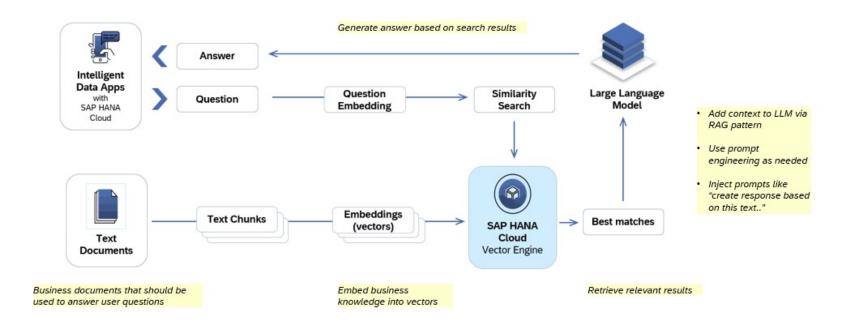
Combine vector similarity search results with other business data

- Integrate business data with graph, spatial, document, and vector data in a single platform
- Eliminate the need for numerous specialized database platforms
- Prevent data silos & data duplication efforts

SAP HANA Cloud SQL/SQL Script query layer Multi-model Relational **Spatial** Graph ML Vector **JSON** processing Semi-structured Structured

Multi-model data/SAP HANA client access/Python client access

*Planned Q1 2024 25 Public


Unified

Data storage

Ground generative AI queries for better responses

Contributes to grounding in Large Language Models by providing semantic and contextual aspects of language

Enable more contextually aware language processing

Public *Planned Q1 2024 26

Use Case Overview

Retrieval Augmented Generation

Overcome insufficient or incorrect results from Large Language Models (LLM). SAP HANA Cloud's vector engine provides contextual data to add the right supplemental data for better responses.

Similarity Search

Allows users determine similarities based on the actual objects. Unlocks on-demand access to information crucial for trend analysis, pattern recognition, personalized recommendations, and various decision-making processes.

Semantic Search

Empowers users to compare the attributes or semantics of an object(s) for enhanced decision-making, content discovery, and knowledge extraction.

Information Retrieval

Facilitates interactive and efficient querying, allowing users to retrieve critical data for decision-making, analysis, and reporting with exceptional speed and precision. SAP HANA Cloud empowers users to navigate vast datasets seamlessly, transforming the way information is accessed and utilized.

Content Based Filtering

SAP HANA Cloud enhances user experience and optimizes engagement by delivering targeted content that resonates with each user's unique profile. This use case extends beyond ecommerce, influencing sectors such as streaming services, news platforms, and more.

Intelligent Data Applications

Build applications that redefine decision-making. This involves real-time data processing, integrating advanced analytics and machine learning, and adopting a scalable, flexible architecture. The unified data management approach also ensures comprehensive insights from diverse data sources.

ublic *Planned Q1 2024 27

28

SAP HANA Cloud Vector Engine

Retrieval Augmented Generation

A system first retrieves relevant information from a knowledge source on a given context or user query. This retrieved information is then used to augment or influence the subsequent process of content generation.

Examples:

- Question Answering Systems: Enhancing responses with real-time information
- Content Summarization: Creating concise and informed summaries
- Chatbots: Offering contextually relevant and personalized interactions
- Content Creation: Improving the quality of generated articles, reports, or responses
- Adaptive Learning: Refine retrieval and generation strategies based on user feedback

Similarity Search

Similarity search focuses on retrieving items that are similar or related to a given query, based on certain features or characteristics.

Examples:

- Content Recommendation Systems: Improving recommendations based on similar user preferences
- Image Retrieval: Searching for visually similar images in large datasets
- Anomaly Detection: Identifying unusual patterns or outliers in data
- Product Matching: Matching similar products in e-commerce platforms

Semantic Search

Semantic search involves understanding the meaning behind the user's query and the content being searched. This process goes beyond keyword matching and takes into account the context, intent, and relationships between words.

Examples:

- Natural Language Processing (NLP): Enabling more precise and context-aware language understanding
- Semantic Image Retrieval: Finding images based on semantic content rather than just visual appearance
- Document Similarity Analysis: Identifying documents with similar semantic meaning
- Customer Support Chatbots: Enhancing conversational understanding for more accurate responses
- Content Tagging and Classification: Improving content organization based on semantic context

31

SAP HANA Cloud Vector Engine

Information Retrieval

Information retrieval refers to the process of finding relevant information using similarity versus Boolean-style logic.

Examples:

- In Text-Based Applications for:
 - Document Retrieval: Finding relevant documents based on vector representations
 - Question Answering Systems: Enhancing accuracy in finding answers to user queries
- In Real-Time Applications for:
 - Web Search: Provide users with instant and relevant search results as they type
 - Sensor Data Retrieval: Gather and process data from sensors and devices, enabling quick decision-making

Content Based Filtering

Search for items based on intrinsic content and features where each vector contains the inherent characteristics or attributes of the object.

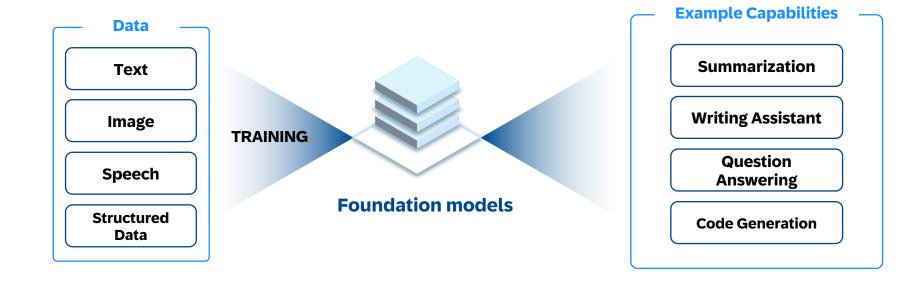
Examples:

Topic Matching

- News Platforms
- Recommend content based on the user's interests and previously read articles

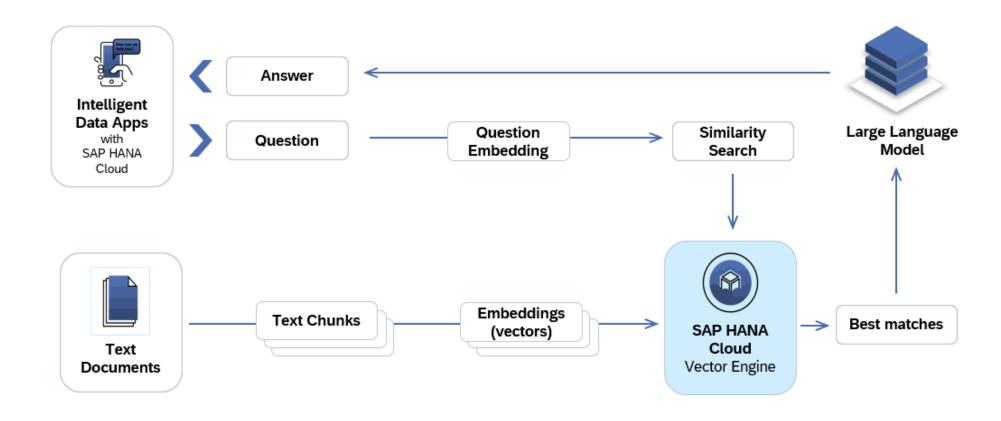
Feature Matching

- E-Commerce Platforms
- Recommend products based on the user's preferences, historical purchases, and current cart selections


Vector Engine and Generative Al

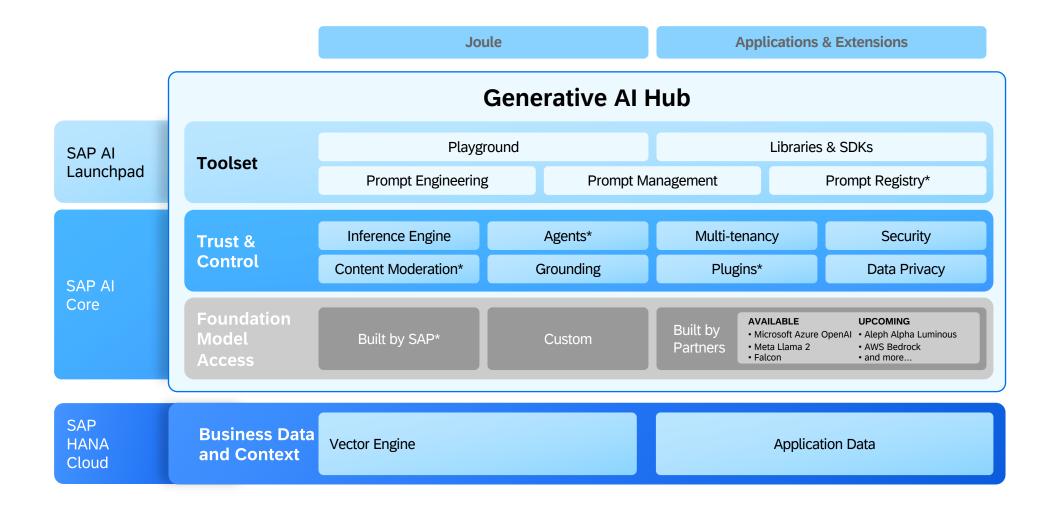
Power of Generative Al

Execute business tasks using natural language


Overcome inadequate or incomplete pre-trained foundational models

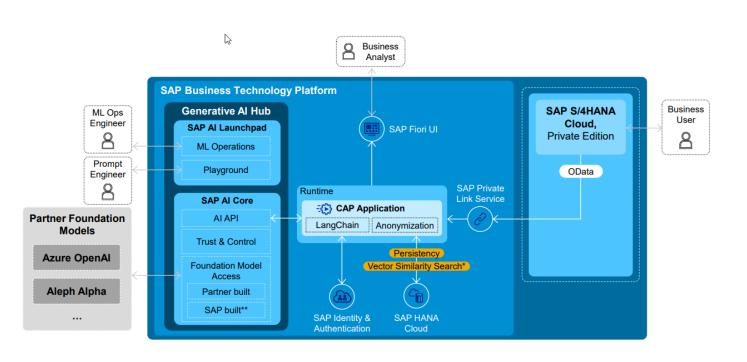
Improve results using prompt engineering, fine tuning, and retrieval augmented generation (RAG).

Public *Planned Q1 2024 34


Retrieval Augmented Generation

*Planned Q1 2024

36


SAP Generative Al Hub

*Planned 2024 <u>GenAl Hub Roadmap</u>

SAP Cloud Application Programming (CAP)

Build GenAI-enabled Intelligent Data Applications

- Provide end-to-end support for Vector datatype & built-in function
- Support for semantic search and RAG capabilities
- CAP CDS to support vector data type by Q1-2024

Public *Planned 2024

Demo

Find out more about SAP HANA Cloud

Learn about SAP HANA Cloud

Check out the <u>sap.com/hanacloud</u> website, which has valuable resources for fast-tracking your knowledge of SAP HANA and a rich support section designed to help you get the highest quality answers quickly and easily from SAP experts

Read our blogs

•community.sap.com

Get started for Free

sap.com/hanacloud

Customer stories

•sap.com/hanacloud

Roadmap

•roadmaps.sap.com

Get involved in the discussion

Engage with community experts on the SAP Community program to accelerate the development of SAP HANA Cloud powered solutions

Influence the future

influence.sap.com

Stay current

youtube.com/SAPTechnology/SAPHANACloud#whatsnewinsaphanacloud

Spread the word

•https://twitter.com/sapBTP

SAP is here to help.

Contact your local SAP representative

sap.com/corporate/en/company/office-locations.html

Thank you

Contact information:

