
RESTful APIs for 
web applications

Abstracting business and system 
complexities to make our web partners happy



Who are we?

• A national furniture retailer with 22 stores

• More than 90% of our products are made 
in the USA (including the Twin Cities & 
Duluth)

• Timeless, modern design

• We care deeply about sustainability and 
exceptional customer service

• SAP team of 12 

• Web team of 21



Why did the SAP consultant go broke?

Because he kept trying to debug his wallet!



Why did the SAP project manager go to 
the beach?
To get away from all the sandboxes!



In the old days, our 
web team:

• Called SAP via SOAP (XML)

• Dealt with SAP technical data terminology

• Had to put up with how SAP defined data 
relationships

• Did not like working with SAP



Now, the web team:

• Calls SAP via REST APIs (JSON)

• Works with mutually agreed upon 
terminology (i.e. orderNumber, 
articleNumber, billingAddress)

• Co-designs the data relationships

• Appreciates what SAP does for them



Basic Architecture

Web 
Servers

Network 
Load 

Balancer

SAP Web 
Dispatcher 

1

SAP Web 
Dispatcher 

2

SAP App Servers

1

2

3

4



All web calls are 
funneled through 
a class that:

• Starts a log of 
the call

• Interprets 
where to send 
the request

• Transforms 
various http 
data to 
minimize 
duplicate work

Handling web requests



Product Availability - Website



Product Availability – SAP Logs



Product Availability – SAP Logs



Product Availability – SAP Log detail



Co-designed data relationships

• Web and SAP teams spent a lot of time up 
front discussing how to model our business 
objects

• Then we’d flow into agile sprints, where the 
SAP team would demo a resource with 
Postman, ask for feedback, and answer 
questions

• Looking at JSON examples, and providing 
multiple options had the best outcomes

• Using consistent naming conventions 
across objects led to fast adoption from the 
web team



• Having a JSON -> ABAP converter was key

• “REST Traffic” table gives flexibility in rolling 
out new functionality

• Super class ZCL_REST:

• Every class mapped in our “traffic” 
table inherits from it

• Implements ZIF_REST interface, 
which ensures consistent data 
mapping between all the classes

• Handles logging, error handling, and 
other utility-like methods which every 
derived class uses

Technical Stuff



• Detailed logging has been 
critical

• Stored JSON as 255 
character chunks in 
database so we can use 
HANA fuzzy search

• Web passes a session ID, 
and other header-level 
identifiers per call which 
help in filtering

• Logging call duration and 
server has helped identify 
performance issues

• Maintain different retention 
periods per log type

Technical Stuff



Questions?

Molson@roomandboard.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Basic Architecture
	Slide 8: Handling web requests
	Slide 9: Product Availability - Website
	Slide 10: Product Availability – SAP Logs
	Slide 11: Product Availability – SAP Logs
	Slide 12: Product Availability – SAP Log detail
	Slide 13: Co-designed data relationships 
	Slide 14: Technical Stuff
	Slide 15: Technical Stuff
	Slide 16

