How Metropolitan Utilities District is leveraging SAC for – Live SCADA Water Plant and Reservoir Analytics

July 20, 2023

Hemanth Kumar Tatikonda Metropolitan Utilities District

Agenda

- Who are we? About MUD
- SAP Journey at MUD
- SAP Analytics Cloud (SAC) Journey at MUD
- Background on SCADA
- Business Scenario- Significance of Water Plant/Reservoir Analytics
- Data Flow How MUD Leverages SAC for Live SCADA Water Plant Analytics
- Live SCADA Water Plant/Reservoir Analytics Demo
- Lessons Learned
- Q & A

Who are We?

- Our first water treatment plant was built near the Missouri River in 1889 by a private company.
- The Nebraska Legislature created the Metropolitan
 Utilities District in the early 1913s as a political
 subdivision of the State to provide water and
 natural gas to the metropolitan Omaha area.
- Metropolitan Water District name was changed to the Metropolitan Utilities District on March 3, 1921.
- The District is fifth largest public gas utility in the United States.
- We provide a product and service at rates that are lower than area investor-owned utilities and among the lowest in the nation.

MUD Numbers

- Population served 600,000
- Natural gas customers served 239,487
- Water customers served 225,028
- Water hydrants maintained 27,602
- Miles of water main 3,155
- Miles of gas mains 2,972
- Employees 876
- Figures current as of December 31, 2022

SAP Journey @M.U.D

- 2007 FICO/Logistics
- 2009 HCM
- 2013 CRB / BW/ BOBJ
- 2014 SF/Mobility Pilot
- 2016 Click/Full Mobility/OpenText
- 2018 MUDMAP/IM/ BW4HANA/VIM
- 2019 Customer Text Alerts/EC/Integration of Lemur/SAC
- 2020 Click FSE
- 2021 Vehicle integration with Open Text, BPC
- 2022 SAP GRC, Time & Attendance, Geographical Enablement Framework
- 2023 S/4 Hana Custom code analysis, Customer preferences.

SAP Analytics Cloud

- Overview of SAP Analytics Cloud
- Benefits of using SAC for water plant and reservoir analytics
- Existing SAC and BI reports inventory

Existing SAC Dashboards at MUD

- AR Aging and Dunning Dashboard
- Customer Payment Processing Dashboard
- SCADA Plant & Reservoir Analytics
- Water Main Break Current Leak
- Water Main Event Dashboard
- Service order Analytics
- Dispatch Monthly Analytics Dashboard
- Technician Customer Satisfaction Survey Analytics
- Customer Usage Dashboard
- Large Customer Analytics Dashboard

Existing BI Inventory- Application Level

Corporate Communications - 2

Customer Accounting - 5

Device Management - 19

FICO - 2

Customer Services - 3

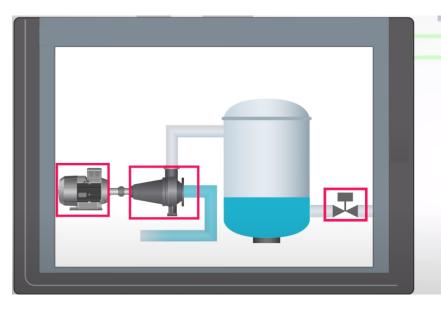
Fleet - 3

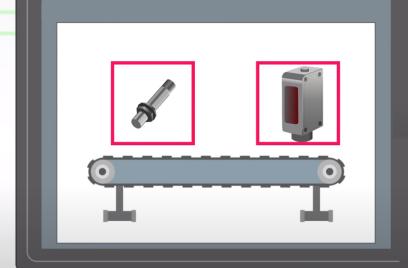
Gas Purchase- 12

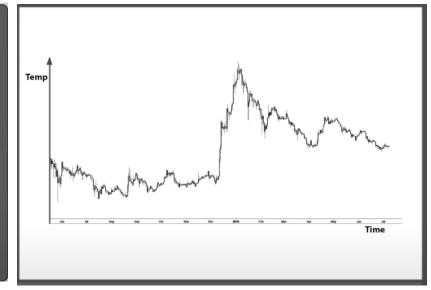
SCADA

- What is SCADA (Supervisory Control and Data Acquisition) system.
- Importance of SCADA in water management.

Components and Importance of SCADA






PLC – Programmable Logic Controller

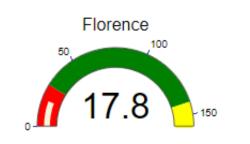
End Device – Pump, Meter, Valve, PT, Etc

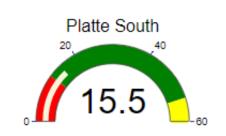
SCADA (Supervisory Control and Data Acquisition)

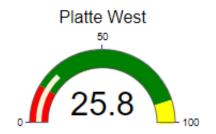
- **SCADA** combines software and hardware to create a control system that is frequently referred to as automation technology.
- Control industrial processes locally or remotely
- Monitor, gather, and process real-time data
- Achieve high-performance data archiving
- Efficiently analyze process values (trends) and messages (alarm control)
- Interact with a wide range of devices using extended communication infrastructure

Business Scenario

- Mud Water and Water Treatment Facilities Plants, Reservoirs, Repump stations.
- Business KPI's

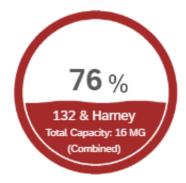



KPI's Definition	Source					
Plant pump day total for Florence, Plate South & Plate West						
Reservoir Capacity Levels						
Pump Station Flow/ On/Off	"MUDPROJECT"."SCADAHIST_History"					
Pump Station discharge Pressure points - On/Off						
Minimum TD/Maximum TD/ Maximum Consumption						
Weather Information	Weather API(Visual Crossing)					
Outage Notes (Plant in outage / Expected Return Date?)	Direct/Manual Entry					
Cost per million Gallons pumped	ZAD_CCA9 (Cost Centers: Actual Costs Using Delta Extraction)					
Average Cost per Main break	ZAD_OPA10 (Orders: Actual Line Items Using Delta Extraction)					
Active Water Main breaks						
Average OOS (Out of Service) time per Main break	ZWARERMANLEAK					
Main breaks by Month & attributes						



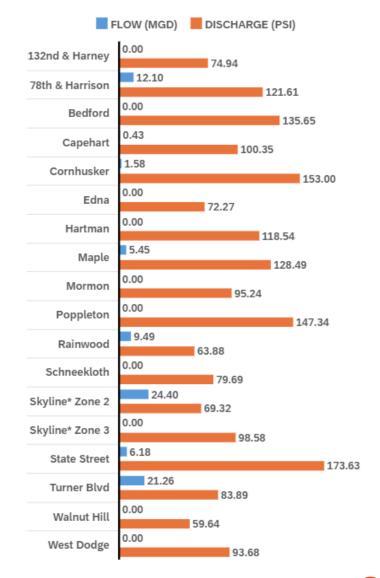
Live Pump Day Total (MGD) as on Jul 17, 2023 12:07:03 PM

1) Live Plant pump day total



Reservoir capacity in % as on Jul 17, 2023 12:07:03 PM

2) Reservoir Capacity levels in %



3)Pump Station Flow and Discharge pressure points - On/Off

Pump Flow and Discharge Jul 17, 2023 12:07:02 PM

4) Current Consumption/Min Demand/ Peak hour Demand

Jul 16, 2023 Minimum Total Demand

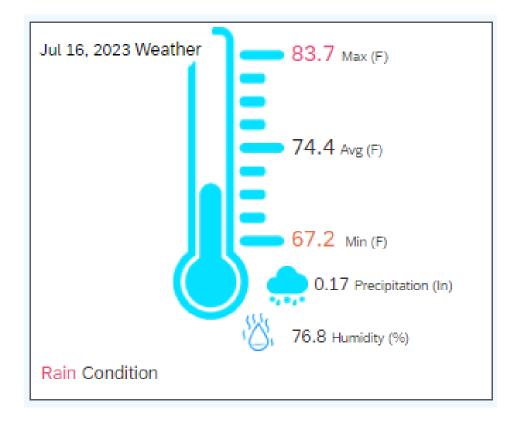
81.51

12:00:00 AM

Jul 16, 2023 MaximumTotal Demand

192.45

6:00:00 AM

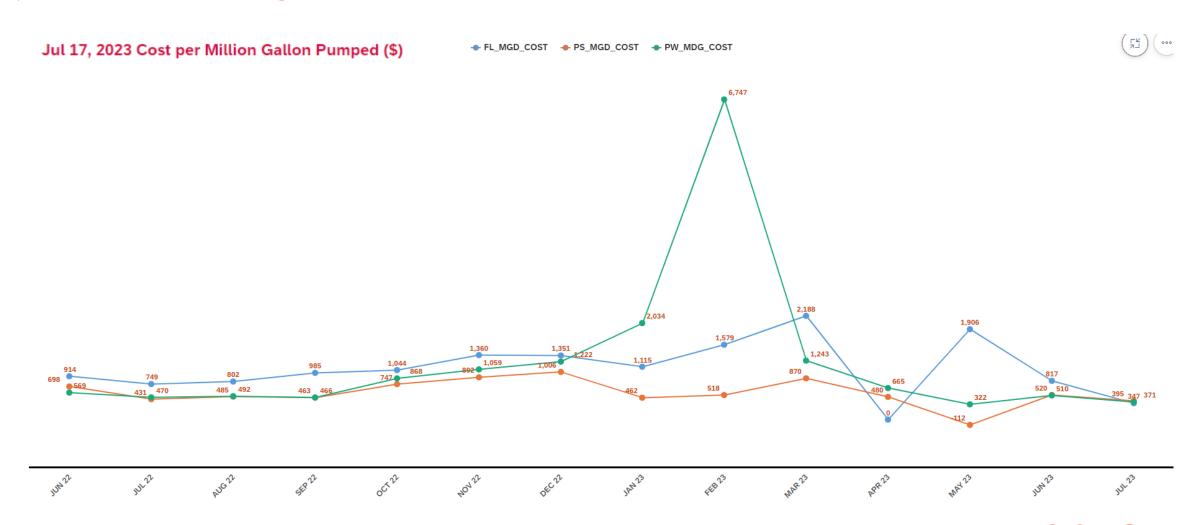

Jul 16, 2023 Maximum Consumption

111.50

12:00:00 AM

5) Weather Information

6) Outage Notes (Plant in Outage / Expected Return Date?)


Outage Notes

Plant / Pump outage Information:

you can write your own data.

7) Cost per million gallon pumped

8) Average Cost per Main-Break

Jul 17, 2023 Average Cost for Water Main Break (\$)

8) Water main breaks and Active water main breaks

- According to the American water works Association and American society of civil engineers there are 240000 main breaks are wasting 8 billion Cubic meters of water in US every year.
- According to Utah state university study found that the water main break rate has increased by 27% since 2012.

	er Mai										
YEAR	Past 10 Years										
	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
JANUARY	98	96	51	57	90	90	44	32	62	72	93
FEBRUARY	65	80	29	35	32	56	51	43	75	55	61
MARCH	46	29	45	26	26	31	63	22	53	41	48
APRIL	41	25	20	27	28	28	34	22	19	34	32
MAY	20	26	26	19	24	26	28	26	26	23	31
JUNE	32	38	28	49	53	43	51	43	48	37	59
JULY	46	30	44	45	57	28	78	61	57	61	2
AUGUST	42	29	61	39	41	39	47	67	55	58	0
SEPTEM	33	27	37	31	40	23	40	46	38	39	0
OCTOBER	38	25	36	33	31	36	35	40	28	45	0
NOVEMBER	42	49	29	38	57	52	56	68	54	55	0
DECEMBER	51	45	53	100	80	45	48	68	51	77	0
Totals	554	499	459	499	559	497	575	538	566	597	326

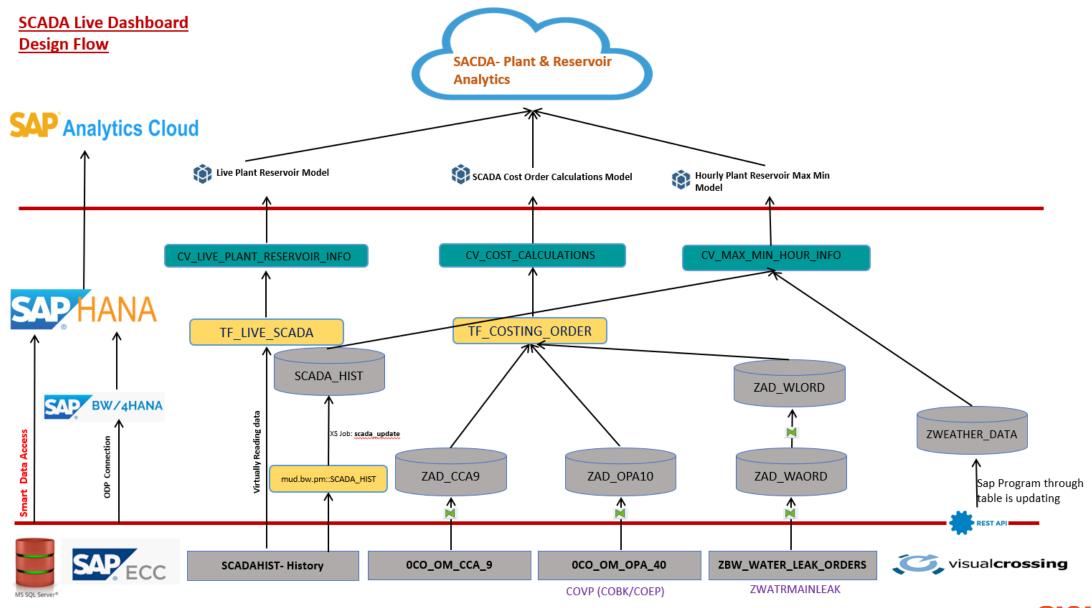
9) Average OOS (Out of Service) time per Main break

Considering Service Shutdown Date/Time and Service Restoration Date/Time.

Average OOS time per Main Break for Jun Month

O1:15:23

10) Water Main Break attributes for Previous Month


• Including Service order, address, Material, Failure Category, Repair date, Technician, Leak cause etc...

Data Flow

SCADA Live Dashboard Design Flow

Live SCADA Story Demo

SCADA Live Story

Lessons Learned

- Understand the Business Requirement.
- Integration with SQL data with SAP Data.
- Use Custom widget instead of R widgets.

Questions?

For questions after this session, contact us Hemanthakumar_Thatikonda@mudnebr.com.

Thank you.

Additional text here.

